PIPE REACTOR BALANCE.
B. Tal-Figiel”, M. Krytow™"

* Institute of Chemical and Process Engineering, Cracow University of Technology, Warszawska
24, 31-155 Cracow, Poland

“* Institute of Water Supply and Environmental Protection, Cracow University of Technology,
ul. Warszawska 24, Krakow

(E-mail: malkryl@vistula. wis.pk.edu.pl)

ABSTRACT

In the report, a mathematical model describing the kinetics of biochemical reactions in a pipe
reactor was formulated. The experimental results were compared with the theoretical models. In
isothermal conditions, the pipe reactor process design and modelling can be based on the
microorganism growth vs. biomass concentration relationship.
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INTRODUCTION

About 95% of digestion processes proceeds in batch reactors or pipe reactors. The model of ideal
reactor is the basic model describing the phenomenas taking place in such reactors. The mass
balance equation in the isothermal conditions can be written as:

Change of Inflow-outflow Inflow-outflow mass
mass in time, of mass stream of mass stream production
in balanced = through + through + or loss
space conversion diffusion
(acumulation)

1 2 3 4

For the ideal pipe reaktor the mass balance can be described by the following equation:

de. ¢o-Vvo—c,-vi D.-A-dc./dx
1: ’ _"_ 1 1

i + > V. T
dt Vi Vi Z‘ H
1 2 3 4

where: index 0 marks inflow values.
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In the ideal pipe reactor the diffusion term is equal zero and the inflow and outflow mass volume
streeams are constant. Hence, the mass balance equation is:

de, Vv v

—=——.l¢c..—c. )+ v...t.=—-lc..—¢. ]+ R.

dt VR ( i,0 1) IZ i,j ] VR ( i,0 1) i
In aerobic processes, the pipe reactor are aerated either with air or pure oxygen. Dissolved oxygen
concentratios in a solution are defined by the mass transport from the gas phase (air buble) through
a boundary layer to a liquid phase. Therefore, the mass balance equations comprises a convection
term, apart from a reaction term:

®
rwnikanie masy = ﬂO ’ (SG)VR ' (CO - CO)
where:

(SG )VR = specific boundary surface in (m*m’ +m™),

B, =—2 = degree of penetration,

o
C ,= OXygen saturation concentration in solution,
Co = 0Xygen concentration in solution

Substiuting to the mass balnce equation we get the following solution.
de, v

E:V_R'(Ci,o —¢)+ R+ B, (So )y, (co —¢o)

Depending on the pipe reactor process regime (batch, continuous, aerobic, anaerobic) different
terms of the mass balance equation will dominate

Unsteady Convection Reaction Penetration term
term term term
Process regime (state) v B, =)y (co—cg)
de V_'(Ci,o -c;) R; :
N R
dt
continuousy | Aerobic 0 X X X
Anaerobic 0 X X 0
batch Aerobic X 0 X z
Anaerobic X 0 X 0
Semi- Aerobic X X X X
continuous | Anaerobic X X X 0
(semi-
batch)

Most reactors employ biomass recycle (without catalyst). A layout of a single pipe reactor with
recycle is shown in Figure 1.
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Figure 1. A layout of a single pipe reaktor with recycle .

PROCESS KINETIC MODEL
Using a general mass balance equation, mass balance formulas for different system elements can be

developed.
1. biomass concentration cy:

o L e e,

or

d((i:tx :VLR'(V*R -Cx,R _V* 'CX _V*R .CX)+RX
d(:tx :VLR'(V*R ‘Cxr -V "Cx _V; 'CX)+RX

Having assumed the following coefficients:
o, defined as:

*

VR
a=—
v
biomass 3, defined as:
c
ﬂ _ xR
CX
and dillution rate D, defined as:
p=l_v
T Vi

71



Tal-Figiel and Krytéw, Pipe reactor balance

the formula has form:
dey
dt

=-D-cy -[1+a-(1—ﬂ)]+RX

dimensionless term [1+ a - (1— )] can be considered for three cases:
a) continuous pipe reactor [1+a-(1- 4 )] =0

dc,
dr
b) continuous pipe reactor without recycle[l+ a -(1- g)]=1

R,

0=-D-c, +R,
¢) continuous pipe reactor with recycle [1 +a- (1 — /3)](1

0=-D-c,-[l+a-(1-B)]+R,
The biomass return rate is usually defined as:

*
\% CXR * *
R=—2"_—-—= where v, =a-v
vV +vVy  Cy
a
R=—2_.p
a+l

2. Substrate concentration cs:

%:VLR.(V* +Cgo+ Vg “Csp — Vg “Csg —V -cs)+RS
after transformation can be written as:

ddits :\\;_R'(Cs,o _Cs)+Rs

introducing a dillution coefficient:

deg

dt = D'(Cs,o _Cs)+Rs

If the loss of substrate Rs is expressed as a biomass growth rate Rx derived from the
stoichiometric relationship and a biomass yield constant Y :

1
Ry=- "Ry
YX/S
the formula can be written as:
deg 1
—>=D-lcc,—Cc)— ‘R
dt ( S.,0 S) YX/S S

Substrate loss Rg can also be defined as:
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and then the mass balance equation is:
deg 1 1
d_:D'(Cs,o_CS)_ Ry = ‘Rp
t YX/S YP/S
A correlation between production rate and biomass growth rate can be determined using the

following equation;

R, =R,

p
X/P
Substituting the above formulas in the mass balance equation we get:

des

i :D'(cs,o _CS)_—'RX - Ry

3. Product concentration cp is:

dop 1 (e
dt v,

Vi "Cpr —(V +VR)~CP)+ R,

Introducing to the above equation the coefficients a,f3 and D:

e pec, fi+a-(-p+R,

Substituting Rx for Rp using formula:

1
R, = Ry

YX/P

c )
P can be written as:

the equation

dc, 1
=—D-.c.-1 (1=
TR Ul v

4. Oxygen concentration
The mass balance equation can presented as:

'RX

dc 1 * * * * *
do :_'(V "Coo T VR "Cor " VR "Cor —V 'Co)+Ro +fo Sy, '(Co _Co)
t Vi
. dc, . .
Using the substrate depletion rate can be written as:
dc, .
a D-(co’0 —Co)+Ro + Lo - Sy, -(co —co)
Defining the oxygen depletion rate Ro with the biomass growth rate Rx, where Rx is defined as:
1
Ry =- Ry,
X/0
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the following relationship is obtained:

dc, .
=D-\cyy —Co)— Ry +6,:Sy -lcg —¢4 )-
dt ( 0,0 0) Y. o x 5o Vi ( 0 o)
The oxygen depletion rate is described with the biomass growth rate Rx and the product yield:
Ry =~ ! 'RX_L'RP
YX/O YP/O

Substituting it to the equation describing the product concentration changes in time, the
following relationship is obtained:

de, 1 1 .
:D'(Coo_co)_ ‘Ry——"Rp + 5,8, '(Co_co)
dt ’ YX/O YP/O ¢
In the next step, the product yield is defined using the micriorganism growth rate:
R, =- 1 "Ry
X/P
and the equation takes form:
de, 1 1 1 .
:D'(Coo_co)_ Ry - ' RX"'ﬂo'SVR'(Co_CO)
dt ’ YX/O YP/O X/P

Summarising , we obtain the set of differential equations:

d;—;‘:—D ey [l+a-(1-B)+R,
dcg 1 1
s _peg, - R,———— R
dt (CSO CS) X/P B YP/S YX/P *
dcp 1
= D¢, [l+a-(1- ‘R
o =D e (=gl Ry
dc, 1 1
-D _ R —— .~ R S (' —
d (Coo co) Y., YTy, Y., x + B80Sy, -(¢o—¢,)

The above equations include a reaction term, which can be described with a basic biokinetical
equation:

Ry =u-cy

where:

u=1(T, pH, cs, ¢, cx)

There are different funcional relationships describing the above variables, for example:

74



Tal-Figiel and Krytéw, Pipe reactor balance

Table 1. Kinetic relationships for u=f(Cs) e.g. qp=f(Cs) [Birjukow and Knaterie 1986]

No. |Equation Author
1 M = const
2 u=K-Cg
3. u=K-Cg
4 G Monod
/Ll /umax KS +CS
3. 3 Cy Moser
lu - /umax m
6. 125
K[
ﬂ = ﬂmax : C
1+
KII
7. _ Cs Andrews
:u - :umax 72
K, +Cy+—5
8. Cq Edwards
ﬂ = ﬂmax '
(K, +CS)~(1+S]
1
9 Cs
M= My ;
K, +Cq J{Hg)g
K ) K,
10. C, Cq Aiba
= . .ex —_———
t. = Lexp| =S5 |- exp| - E5
H = Hiax p K, P K,
Table 2 Kinetic relationships for u=f(Cp) e.g. qp=1(Cp) [Birjukow and Kanterie, 1988]
No. Equation
1‘ /Ll:/’lmax_k.CP
2. kp
/u - /umax kP + CP
3. P G S
,U _/umax p CP
4. Ilelleax'(l_K.CP)n
_ <
H = Hoax m
6. Uy dla Cp < Cp
C P KR
= (1 + 7K’ j
H nax ‘7C: dla C, > C, x
1+ —
K P
k Ho= iyt u .
- Ho .
K,+C,
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Table 3. Kinetic relationships for u= f(T) e.g. gp= f(T) [Birjukow and Knaterie, 1986]
No. Equation
1. IL[ = ‘[JO + K . T
2. 2
T
= —K =1

penm (1)
3. _K

H=p,e’
4 K )

p=p-et —p e’

K
p=pe’
Table.4. Kinetic relationships for p=f(pH) e.g. qp=f(pH), [Birjukow and Kanterie, 1986]

No. Equation
L. p=K,-K,-pH+K, - (pH)’
2. K,

H= :umax KH + [H]
3. K OH

H= Iumax KOH + [OH]
4' lleGX

M=t

(1 .\ [OH]M1 .\ [OH]J
H I<OH
p=f(cx)

xt=x%m-[1— o ]
meax

76



Tal-Figiel and Krytéw, Pipe reactor balance

EXAMPLE:
The process was carried out in isothermal conditions, in a pipe reaktor; the biomass concentrations
were measured every hour.

Table 6. Measurement results

time [h] Biomass concentration
g dry solids/dm’

25°C 35°C
0 0,200 0,164
1 0,203 0,165
2 0,210 0,166
3 0,228 0,172
4 0,261 0,195
5 0,314 0,279
6 0,397 0,448
7 0,503 0,682
8 0,621 1,052
9 0,738 1,458
10 0,888 1,618
11 1,137 1,694
12 1,409 1,749
13 1,57 1,784
14 1,649 1,838
15 1,702 1,859
16 1,747 1,885
17 1,776 1,897
18 1,804 1,889
19 1,824 1,885
20 1,847 1,889

If a substrate concentration cg or a product concentration cp cannot be determined
experimentally then a model can be developed based on the mocroorganism growth rate and a

biomas concentration realtionship p = f(cy). In this particular case two medels were compared:
Model 1:

ﬂ:Iumax.[l_

and model 2

t
/u:/'lmax'[l_ CX (l—e ti}
€\ max

In both models concentration variations in time, cx = f(t), were considered:

Cx

C

X max

From model 1,
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after rearranging variables and integration, the model equation can be developed:

Cx

J~ dCX

Cx

C

X,max

= Hinan -jdt
] ;

with parameters, which can be determined after fitting the curve to the experimental values.

. Hmax 't
CX,O c

Cx =
C
X,0
1_
CX,max

].(l_eﬂm-t)

The same procedure can be applied to the model 2:

1 dey
“ dt

Cx

= Hoax [1 —

Cx

X max

o

after rearranging variables and integration, the model equation can be developed:

Cx

J. dCX _y
CXO CX max
Tey | 1- X
Cx0

. [l_e-:}

C

X,max

1+ CX,max _1

Cx.0

- €

t
{_:umax {H'ti {e i

|

The models describe a log growth phase.
Model parameters cx o, Cx max, lmax, ti Were summarized in Table 6 (25 °C).

Tabela 7 . Kinetic parameters (25°C).

Parameters Model 1 Model 2
cxo [g/dm’] 1,95 1,86

Cx.max [2/dm’] 0,063 0,00089
Umax [h7'] 0,346 0,63
t; [h] 9,49

r 0,9885 0,9960
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Figure2. Biomass growth in time.

The second model better matches the experimental curve.

Temperature relationship of pmax was determined with the Arrhenius curve.
From the function pmax = f(1/T) activation energy can be found.

Summary:

Based on the experimental results, the quantitative mathematical model of the biochemical reaction
kinetics in a pipe reactor was formulated. This model is based on a mass balance and it comprises a
set of differential equations (four); the equations have taken advantage of the relationships between
microorganism growth and temperature, pH, substrate concentration, product concentration,
biomass concentration [ = f( T, pH, cs, cp, cx)] .

The pipe reactor process design and modelling can be based on the microorganism growth vs.
biomass concentration relationship [ = f(cx)], in isothermal conditions.
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